NOvA Experiment Status

Martin Frank University of Virginia
All Experimenter's Meeting, August 5, 2013

Far Detector Progress

NOvA Far Detector Assembly Progress

Status Date: 05AUG13

Far Detector Construction

Module Production at UMN Factory

Block Assembly at Ash River

Block Assembly/Installation Time

18 shifts now typical per Block (~2.25 weeks calendar time)

Near Detector Progress

The muon catcher is installed

1 mini-block (4 layers modules no steel) at North end went first,
 then 10 planes with steel and a module layer on each side.

#8 transfer into hall

#8 nearly in place

#8 transfer onto rails

#8 winch into place

All 10 in place on Aug 1 (also note electronics mounted on sides of catwalk)

J. Cooper

TRIGGER INTRODUCTION

- NOvA's standard triggers are:
 - NuMI
 - Booster
 - Cosmic Pulser (10 Hz)
- The triggers are issued using time stamps.
- The data buffer ring is filled with data from the detector and when a spill is registered, the corresponding data is selected and read out.

University of Virginia

TRIGGER INTRODUCTION

- NOvA's data-driven triggers (DDT) are:
 - Monopole
 - Supernova
 - Muon Neutrino (contained, upward going)
 - Electron Neutrino
 - etc.

Martin Frank

- The triggers are issued based on fast analysis of the data.
- The data is placed into a shared memory segment, analyzed and triggered.

TRIGGER WEEK

- Last week, we assembled the NOvA trigger group and ran many tests on NDOS (Near Detector On the Surface) and the far detector.
- We are able to send trigger messages from our DDT framework (using ART + ARTDAQ) into the NOvA DAQ system!
- Data is properly recorded based on our messages.
- We are able to run several trigger processes in parallel.
- We had a first look at far detector data.
- This focused week of trigger work allowed us to focus in on the remaining issues for production running.

TRIGGER WEEK

- We started up several monopole trigger processes on NDOS.
- Many of them timed out, but four of them survived for a long time (~ 6 hours).
- o CPU usage (left) on an 8 core farm node shows this.
- The good news are that the memory usage (right) is steady!
- We found that we have to tune our shared memory segment (*i.e.* increase depth) to prevent time-outs.

Summary

- Currently taking data with 5 kilotons of Far Detector
 - ~2 kilotons with full electronics (warm APDs)
 - > 1 million gallons of liquid scintillator in the detector
- Running day and swing shifts, 7 days per week will start 24 hour coverage this weekend
- Online tools are being used to monitor FarDet commissioning progress
- Preparing for NUMI beam, e.g., development of trigger modes for more efficient capture of data